あなたのキャリアチェンジ成功を保証します

AI(人工知能)技術を1からわかりやすく解説。AIとは何かから学習方法まで

作成: 2019.01.11

>> 世帯年収300万以下限定!
転職成功まで受講料発生なし。詳細はこちら

さまざまな分野で耳にする機会が増えたAI(人工知能)。

AIについてなんとなくわかるけれど、説明はできないという方も多いのではないでしょうか。今後のITや社会の発展に欠かせないAIについて理解すれば、プライベートとビジネスのどちらにおいても役立つでしょう。

そこで今回は、AI技術について1からわかりやすく解説。AIとは何かをはじめ、歴史・実例・学習方法・アプリまで幅広く紹介します。
この記事を読めば、これからの時代に大きな影響を与えるAIに対する理解を深めることができるでしょう。

この記事の目次

AI(人工知能)とは何か

 

人工知能の正式名称や基礎となる概念について、まずは解説します。

AI(人工知能)の正式名称

AIは「Artificial Intelligence」の略です。Artificialは「人工的な、人造の」、Intelligenceは「知能・理解力・思考力・知性」といった意味があります。

これを日本語に訳すと、「人工知能」となります。

AI(人工知能)は概念

AIがなんとなくわかるようでわからないという印象を受けるのは、それが技術や概念を指しているからです。AIは簡単に言うと、人によって作られる人間と同じよう知能という技術や概念。

そのため、ビジネスなどで「AIを導入しよう」と言っても、具体的なビジョンは見えてきません。AI技術を使ってできることを具体的に示して、それに取り組もうと伝えるとイメージが共有しやすくなります。そのためには、AIでどのようなことができるのか知ることが必要です。

AI(人工知能)技術の歴史について

現在のAIの盛り上がりは、第3次ブームと呼ばれています。これまでの歴史の中で、AIは2度のブームを迎えました。

そのAI技術の歴史を知ると、AIに関する最低限の知識がスムーズに得られますので押さえておきましょう。

第1次ブームは1960年代

「人工知能」という言葉は1956年に誕生しました。学術研究の対象として、ダートマス会議で提唱されたことがはじまりです。

人工対話システム「ELIZA(イライザ)」が1964年に開発。会話ができる人工無脳の原点となりました。1967年には知識をベースとしたチェスプログラムの開発に成功。第1次ブームにおいて、AIに関する研究は大きく進みました。

しかし、1969年にマッカーシー氏とヘイズ氏が指摘した「フレーム問題」により、AIのブームは落ち着きを見せます。

たとえどんな方法をとっても,途中で世の中のありとあらゆることについて考える必要が生じてしまいます.これがフレーム問題です.

チェスをするとか,機械を組み立てるとか,やろうとしていることを限定している人工知能では,このフレーム問題は生じませんし,このような状況では人工知能技術が実用化されています.しかし,いろいろな状況に対応できる人工知能ではこの問題は無視できません.

引用元:人工知能の話題: フレーム問題 人工知能学会

第2次ブームまでは「ルールベース」

第2次ブームは1980年代に到来。日本で自然言語の理解などを目標とした第5世代コンピュータープロジェクトがはじまったことで、AIに対する関心が高まりました。

この第2次ブームまでは、ルールベースのシステムが中心。ルールベースのシステムは、人間がルールや知識といったデータを用意して、それを利用してAIが判断を行います。

特定の分野における質問の受け答えや問題解決のシステムが注目を集めましたが、成功には至りませんでした。

現在の第3次ブームは「機械学習」が中心

第3次ブームのきっかけとなったのは、2012年の「Googleの猫」です。コンピューターの自律した学習によって、画像から猫を自ら認識できるようになったとGoogleが発表。この技術を支えたのがニューラルネットワークです。

ニューラルネットワークとは、人間の脳の神経回路の構造を真似て作られた学習モデル。ニューラルネットワークは、人間が自然に行う学習能力と同じ機能の実現を目指す機械学習の学習モデルの1つです。

そして、ニューラルネットワークにおける学習方法であるディープラーニングが、現在のAIの飛躍的な発展を支えています。

深層学習(ディープラーニング)について

ディープラーニングを利用すれば、AIは自ら分類する軸を見つけて学習が可能です。

機械学習は大量のデータから学習を行います。シンプルなニューラルネットワークは、入力層がデータの入口となり、出力層が処理した結果を出力。

ディープラーニングは、その間に中間層を置くのです。その中間層は多層化されており、DNN(ディープニューラルネットワーク)と呼ばれます。中間層が多層化されたことで、より複雑な分析が可能になりました。

モノを判断するざっくりとした特徴を特微量と呼びます。この特微量を人間が教えることで、AIは特定のモノの概念を学習していました。それまでは、AIが自ら特微量を学習できないことが大きな壁となっていたのです。

ディープラーニングによって、AIはその特微量を自ら見つけ出せるようになりました。「Googleの猫」はディープラーニングが使われており、大量の猫の画像から特微量を発見。そして、その学習の成果から猫の画像を認識できるようになったため、大きな衝撃を与えたのです。

AI技術を構成する要素と流れ

AI技術を構成するインプット・データ解析方法・アウトプット・使いみちといった要素と、その流れについて説明します。

データのインプット

どのようなデータをインプットして学習させるのかが、AI技術の入口です。データには、POSデータ・株価・Web・アクセスログと構造化データと画像・動画・音声・テキストといった非構造化データなどがあります。

データの解析方法

集めたデータをどのように解析するのかが次の段階です。ルールベース・機械学習・ディープラーニングがこの段階の選択肢にあたります。

アウトプットの方法

解析した結果を出力する際にもさまざまな方法があります。出力する方法としては、分類・予測・生成・制御などが考えられるでしょう。

使い道の検討

AI技術のアウトプットの使い道としては、チャットボット・商品のおすすめ・故障予測・自動運転・販売計画立案などが考えられます。それぞれの要素の組み合わせによって、得られる結果は変化するでしょう。

「使い道から考えて、それぞれの要素を検討する」「所有しているデータから、使い道を考える」、どちらの方向からもAI技術の活用方法の発想は可能です。

TECH::EXPERT 東京・名古屋・大阪・福岡

プログラミング未経験からWebエンジニアとして転職成功まで導くスクール TECH::EXPERT は、挫折しない環境を提供いたします。すべて駅から通いやすい便利な場所。いつでも質問できるメンター(講師)、一緒に頑張る同期がいるから頑張れる。そんな教室を是非見にきてください!

AI(人工知能)技術とロボットの違い

自ら考えることができるという点で、AIとロボットは大きく異なります。AIは自律学習が可能で、自ら考えて対応が可能。

ロボットは、あらかじめ設定されたプログラムによって対応しますので、決められた動きしかできません。

AIは自ら学習ができるため、人間の能力を超えるシンギュラリティ(技術特異点)が起こるとも言われています。

AI(人工知能)の種類

AGI・特化型人工知能といった、AI技術の種類について以下で解説します。

AGI(汎用人工知能)と特化型人工知能

AIの種類には、AGI(汎用人工知能)と特化型人工知能があります。以下で2つの違いについて解説します。

AGI(汎用人工知能)はまだ存在しない

人間と同じような幅広い知能を持つAIをAGI(汎用人工知能)と呼びます。AGIは「Artificial General Intelligence」の略。人工知能という言葉から多くの方が連想するのは、このAGIではないでしょうか。

このAGIは60年前から研究されていますが、まだ正しくは存在していません。人間は見る・聞く・話す・感じる・考えるといったさまざまな要素を組み合わせた能力を持っています。

それぞれの要素におけるAIの研究は行われていますが、それらのAIを高い次元で機能させるAGIは実現できていません。

特化型人工知能は特定の分野でパフォーマンスを発揮

特化型人工知能は、ある分野に特化したAIです。「囲碁の対局」「自動運転」「画像認識」など、特定の領域において高いパフォーマンスを発揮。

複数の領域をまたがって使用できるAIを汎用人工知能と呼ぶ場合も増えており、2つの違いがわかりづらくなってきています。「汎用」という言葉の意味からすれば間違いではありませんが、本来のAGIとは異なることを覚えておきましょう。

弱いAI(人工知能)と強いAI(人工知能)とは

弱いAIと強いAIという考え方があり、人間のような自意識を再現できるかが分ける基準となっています。

弱いAIは自意識がなく、人間の知能の一部を代替するロボットのようなものです。限られた処理を行うので、特化型人工知能がこれにあたります。

強いAIは、人間のように物事を認識して行動できる自意識を持ったAIです。アトムやドラえもん、SF映画に出てくる人工知能は概ねこの強いAIと言えるでしょう。AGIはこの強い人工知能にあたります。

AI(人工知能)技術の4つのレベルについて

AIができることは4つのレベルに分類が可能。この4つのレベルは人口知能研究の第一人者である松尾豊さんによって提唱されたものです。

■AI(人工知能)技術の4つのレベル
  • レベル1:シンプルな制御プログラム
  • レベル2:人間がパターンを決めたプログラムでさまざまな対応をする
  • レベル3:対応パターンを自動的に学習して判断する
  • レベル4:対応パターンと学習に使うルールを自ら獲得する

 

レベル3では、機械学習が重要なキーワード。また、レベル4へのブレイクスルーを実現したのがディープラーニングです。

 

AI(人工知能)技術の現状と将来性

次に、AIの現状と将来性について解説します。

AI(人工知能)技術の現状について

AIの第3次ブームはピークに差し掛かっている。AIを実用化する企業やAI関連技術の開発の導入実績を積み重ねている企業も増えている。

また、日常生活においてもおAIの普及は広まっています。身近なわかりやすい例が音声アシスタント。Googleアシスタント・Alexa・Siriなどを普段から使っている方も少なくないでしょう。

AIと意識せずにAIを利用したサービスや製品を利用する機会は今後も増えていくと予想されます。

AI技術の開発を行っている企業とは

実際にAI技術の開発を行っている企業について紹介します。世界を代表するIT企業はAIに大きな関心を示していることが、下記をご覧いただくとわかりるでしょう。

Google

検索エンジンで有名なGoogleは、さまざまなIT関連の事業に力を入れる企業です。その中の1つの分野として、AIにもGoogleは力を入れています。検索の言語処理にAIを活用したり、Googleアシスタントを搭載したGoogle Homeを発売したりと、AI技術の開発においてGooogleは他の企業をリードする存在です。

参考サイト:Google AI

Apple

AppleのAIを使った技術と言えば、iPhoneに搭載されているSiri。それだけでなく、近年は自動運転プロジェクトにも力を入れています。どのようなサービスや製品として発表されるのか楽しみに待ちましょう。

参考サイト:Apple Machine Learning Journal

IBM

情報通信事業における世界を代表する大手企業IBM。業務システムの開発を行っているIBMもAI技術の開発をリードする企業です。「ビジネスのためのAI」であるIBM Watsonが有名で、さまざまなサービスを提供しています。

IBM Watsonは、アメリカのクイズ番組でクイズ王に挑戦して勝利。最高金額を獲得したという実績があります。

参考サイト:IBM Watson:IBM Watson – Japan

AI(人工知能)技術が雇用に与える影響

仕事がAIに奪われるのではないかと心配に感じている方もいらっしゃるでしょう。

総務省の情報通信白書によると、27人の有識者の中の23人がAIは少子高齢化による労働力の減少を補完する良い影響を与えると答えています。また、AIによって新たな市場が創出されて、雇用の機会が増えるという見方もあるのです。

ただし、AIによって代替される労働は単純作業だけではないことを覚えておきましょう。ポイントは、人間よりもAIが行った方がコストが低いかどうかです。

人を雇用する場合には、賃金が発生。AIを導入する場合には、導入と運用に費用がかかります。同じ生産性が得られるのであれば、この2つがどちらが低いかが判断の基準となるのです。

ただし、仕事は奪われるだけでなく、それにより新たな雇用が生まれることも考えられます。AIについて理解して、変化する労働のあり方に対応することが大切と言えるでしょう。

AI(人工知能)開発を学ぶ方法

AI技術の開発を学ぶ方法について解説します。

プログラミング言語はPythonがおすすめ

機械学習やディープラーニングについて学びたい場合には、Pythonがおすすめです。PythonはAI技術の開発に使われており、その学びやすさや汎用性の高さから人気のプログラミング言語。

プログラミング初心者がはじめて学ぶ言語としても最適です。Pythonについては、下記の記事で詳しく解説しています。

■TECH::NOTE関連記事

プログラミングスクールでAI入門

AI技術の開発について効率的に学びたいのであれば、プログラミングスクールがおすすめ。どうやってAIの技術をどうやって学べば良いか悩んでいる方は、まずTECH::CAMPの無料プログラミング体験会に参加しましょう。

無料プログラミング体験会へ

独学でAI(人口知能)開発について学ぶ

独学でAI開発について学びたい場合には、Webサイトや書籍を利用すると良いでしょう。無料で提供されているWebサービスもあります。コストを抑えながらまずは基礎を身に付けて、必要に応じて知識やスキルを深める方法がおすすめです。

AI(人工知能)開発が学べるWebサイト

AI技術の開発が学べるおすすめのWebサイトについて紹介します。

Aidemy(アイデミー)

AIエンジニアの育成を目的としたオンライン学習サービス。すべてのコースを受講するためには、費用が必要。「Python入門」「機械学習入門」「ディープラーニング基礎」の3つのコースは無料で学習できます。

Webサイト:Aidemy | 10秒で始めるAIプログラミング学習サービスAidemy[アイデミー]

Paiza

ITエンジニア向けの求職・学習Webサイト「Paiza」は、Python x AI 機械学習入門コースを無料で提供しています。アニメのような世界観を持ったWebサービスですので、ゲーム感覚で楽しく学びたい方にぴったりです。

Webサイト:ロシアの美少女ハッカーによるAI機械学習入門【CV上坂すみれ】|paizaラーニング

Learn with Google AI

Googleが無償で提供している英語のAI学習サイト。無料ですが入門から発展的な内容まで幅広く機械学習について学べます。

Webサイト:Education – Google AI

AI(人工知能)開発に役立つ書籍

AI技術開発に役立つ書籍について紹介します。

おうちで学べる人工知能のきほん

身近なモノからAIの仕組みやビジネスに活用するきっかけといった基礎知識について学べる本です。AI開発に携わりたいエンジニアから、AI初心者まで幅広い人におすすめ。

独学プログラマー Python言語の基本から仕事のやり方まで

Pythonの知識やノウハウを深く学べる一冊。Pythonだけでなく、プログラミング全般に役立つ知識が学べます。プログラミングをこれから学びたい人にぴったりの参考書です。

わかりやすく基礎的な情報も網羅されていますので、プログラミングの面白さが実感できるでしょう。

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

この本は、非エンジニアが0からAIやディープラーニングを学ぶ上でとても役立ちます。手を動かしながら学ぶことで、AIの仕組みについて深く理解できるでしょう。

人工知能は人間を超えるか ディープラーニングの先にあるもの

人口知能の第一人者である松尾豊さんが、AIとは何かをまとめた入門に最適な書籍。知識がない人でも読みやすい内容で、AIの現状や未来についてよくわかる興味深い内容です。

AI(人口知能)技術が体験できるアプリを紹介

AIを使ったサービスを実際に使ってみたいという方には、スマホのアプリがおすすめ。以下で、AIが体験できるアプリについて紹介します。

会話で生活をサポート「SELF」

AIロボットとの会話が楽しめるアプリ「SELF」。会話を通してAIがあなたのメンタルや健康の状態を分析して、生活をサポートします。

ロボット・美少女型ロボット・アニメキャラ・イケメンなど、さまざまな会話相手が選択可能です。

SELFのダウンロード

SELFはiOSとAndroidのどちらにも対応しています。

英会話が練習できる「SpeakBuddy」

AI技術を活用した音声認識によって英会話が学習できるアプリ「SpeakBuddy」。間違った発音を的確に指摘してくれます。

英会話で人間と話すことにハードルを感じている人におすすめのアプリです。

SpeakBuddyのダウンロード

Microsoft Pix カメラ

Microsoft Pix カメラはAIを搭載したカメラアプリです。写真の被写体を認識して、自動補正を行います。プロの写真家のような写真が簡単に撮影可能。

Microsoft Pix カメラのダウンロード

Microsoft Pix カメラはiOSのみに対応しています。

女子高生AI「りんな」もおすすめ

りんなはアプリではありませんが、手軽にAIとの会話が体験できるので紹介します。LINEアプリがあれば、すぐにりんなとの会話が楽しめます。

りんなの機能・仕組み・はじめ方については、以下の記事で詳しく紹介しています。

■TECH::NOTE関連記事

 

 

AIエンジニアは将来性が高い

 

今後の社会の発展において、なくてはならないAIを利用したシステム開発を行うAIエンジニアは将来性が高い仕事です。2019年はAIのブームが落ち着きますが、堅調なニーズは見込めるでしょう。

■TECH::NOTE関連記事

 

ロイターによると、IoTやAIに関する技術者を十分に確保できていないと感じている企業は93%にのぼるとあります。AIエンジニアがどれだけ需要の高い職種かおわかりいただけるでしょう。

この記事を読み、AIに関する仕事に興味を持った方は、AIエンジニアを目指してみてはいかがでしょうか。

一度挫折したプログラミング、TECH::EXPERTならやりきれます

プログラミングを独学で学ぶことに限界を感じていませんか?

効率よくプログラミングを学ぶなら、プロのメンター(講師)のもとでしっかりと教わることがおすすめです。TECH::EXPERTではすぐにメンターに質問できるから「わからない」を「わかる」に変えられてプロとして通用する技術が身につきます。

同じくプログラミングを学ぶ同期がいるのも挫折しないポイントです。

無理な勧誘は一切ありません。まずはお気軽に無料カウンセリングでご相談ください。

無料カウンセリングの日程を見る

この記事を書いた人

Kimura Hiroto
Kimura Hiroto
音楽・ITをはじめとするさまざまなジャンルのライティングを行っています。ITエンジニアの経験を生かし、TECH::NOTEでの執筆を担当。好きな食べ物は豆腐。